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Abstract
Distinct clusters of RNA polymerase II are responsible for gene
transcription inside eukaryotic cell nuclei. Despite the functional
implications of such subnuclear organization, the attributes of
these clusters and the mechanisms underlying their formation
remain only partially understood. Recently, the concept of
proteins and RNA phase-separating into liquid-like droplets was
proposed to drive the formation of transcriptionally-active
subcompartments. Here, we attempt to reconcile previous with
more recent findings, and discuss how the different ways of
assembling the active RNA polymerase II transcriptional ma-
chinery relate to nuclear compartmentalization.
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Introduction
The mammalian cell nucleus is filled with DNA, RNA,

and protein, which collectively take up w30% of its
volume [1]. Remarkably, this space segregates specific
genome-associated activities into subcompartments
without involving membranes [2e4]. In the early 1990s,
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it was experimentally demonstrated that active RNA
polymerase II (Pol II) organizes into distinct 50e200 nm
sized nuclear foci termed “transcription factories” with a
mean density of at least one factory per mm3 in
mammalian cell nuclei [5]. Compared to the diffuse
nucleoplasmic pool, these foci contained w1000-fold
higher levels of the relevant protein machinery,
harbored the majority (> 90%) of nascent transcripts,

and persisted inside of nuclei even after nucleolytic
detachment of most chromatin [6]. However, the
mechanisms governing the formation and dynamics of
such factories are only partially understood [7].

Recently, new insights into the organization of
membraneless cellular subcompartments have emerged
from soft matter physics, pointing to phase separation
(PS) as a potential driver for the formation of Pol II tran-
scriptional subcompartments [8e11]. One form of PS,
liquideliquid phase separation (LLPS), explains the for-

mation of cytoplasmic proteineRNA bodies as demon-
strated for P granules [12]. This allows these organelles to
fuse, to maintain a border to their surroundings while
exchanging with it, and to functionally compartmentalize
the processes they harbor. Formation of a phase-separated
droplet increases the local concentration of enzymatic
activities and substrates and co-activators alike [13].
Thus, the idea of phase-separated Pol II subcompart-
ments aligns with the cells’ need for efficient transcrip-
tional activation. However, whether PS is the mechanism
that cells exploit to execute the different phases of the

transcription cycle remains controversial [14,15].

Here, we will focus on the Pol II holoenzyme as a
candidate complex for coalescing into phase-separated
condensates. Since Pol II alone is a very large structure
that dwarfs its DNA template [16], the question that
follows is: how is the transcriptional machinery organized
in these apparent foci, and how do the consecutive steps
in a gene’s transcription cycle (i.e., initiation, elongation,
co-transcriptional splicing, and termination) integrate or
separate in space and time? Various mechanismsdthat

are not mutually exclusivedhave been proposed to
rationalize assembly and maintenance of active Pol II
clusters [5,11]. Here, we discuss mechanisms for
assembling transcriptionally-active subcompartments
and their functional implications while attempting to
reconcile previous with current research.
www.sciencedirect.com

mailto:karsten.rippe@dkfz.de
mailto:argyris.papantonis@med.uni-goettingen.de
http://www.sciencedirect.com/science/journal/18796257/vol/issue
https://doi.org/10.1016/j.ceb.2022.01.005
https://doi.org/10.1016/j.ceb.2022.01.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ceb.2022.01.005&domain=pdf
www.sciencedirect.com/science/journal/09550674
www.sciencedirect.com/science/journal/09550674


RNA polymerase II nuclear subcompartments Rippe and Papantonis 89
Chromatin binding and bridging
interactions
Pol II transcription is initiated via sequence-specific in-
teractions of transcription factors (TFs) with promoter
and enhancers [7]. Subsequently, the general machinery
assembles into preinitiation complexes (PIC; comprises
TFIIA, -B, -D, -E, -F, -H, Pol II, and Mediator). The
classical view of PIC assembly involves specific
proteineDNA and proteineprotein interactions that
lead to a supramolecular entity the structure of which has
been resolved at atomic resolution [17]. Long- and short-
range bridging interactions via TFs can bring enhancers
and promoters into spatial proximity and would suffice

for the formation of Pol II factories with a spatial orga-
nization similar to that found in the cell [5,11,18,19]
(Figure 1). As the residence times of active Pol II and
TFs on chromatin are in the range of a few seconds
(observed for most TFs), the resulting subcompartment
is highly dynamic. However, at numerous gene loci, TF
binding sites are often clustered such that, despite
transient binding, chromatin remains on average contin-
uously occupied to boost high local concentration of
Figure 1
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the transcription-related apparatus. There also exist
chromatin-binding factors that bind to cognate sites for
many minutes (e.g., CTCFand cohesin [20]), giving rise
to conformations that persist for lengths of time compa-
rable to longer-lived Pol II clusters. Moreover, despite
formation of highly dynamic chromatin loops and clus-
ters, polymer models of chromatin organization via tran-
sient bridging can recapitulate the formation of the

transcriptionally-active subcompartment similar to that
observed in vivo, as well as the experimentally-observed
transitions between functional states [5,11,18,19]. In
addition to these intrachromatin linkages, Pol II clusters
might associate with the nuclear substructure, much like
heterochromatin is physically linked to the nuclear
lamina. The biochemical purification of Pol II factories
from human cells required using caspases for their release
from lysed nuclei. Their protein and RNA contents
showed the expected selective enrichment for TFs and
nascent RNA, but also numerous nucleoskeletal compo-

nents that may potentially “anchor” the factory core
[21,22]. Notably, Pol II clustering in response to signaling
cues is enhanced by nuclear actin and its co-factors [23].
TF bridging
chromatin

ich core

Pol II
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bound proteins to promote enhancer–promoter interactions involving Pol II
d, with enhancers producing short-lived eRNAs. Thus, they do not
ery of a chromatin-depleted protein-rich core. This core could represent a
en the IDRs of transcription factors (TFs) and co-activators.
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Pol II clustering around a protein-rich core
The aforementioned “classical” view of multiprotein

complex assembly on chromatin as a sequential and
temporally-ordered process clashes with the finding that
supramolecular complex assembly occurs stochastically
and in parallel in the cell (e.g., the studies by Wachsmuth
et al., Stasevich et al., and Luijsterburg et al. [4,24,25]).
The resulting complexes are highly dynamic, exchange
their components within seconds, and involve unspecific
multivalent interactions that lead to further accumula-
tion of protein and RNA around sequence-specific TF
nucleation sites. In this context, it seems particularly
relevant that Pol II clusters contain significantly less

chromatin than their surroundings and variable RNA
amounts pending on gene expression amplitude and the
phase of the transcription cycle (e.g., initiation versus
elongation). Electron spectroscopic imaging of Pol II
clusters reveals that active polymerases decorate the
periphery of polymorphic protein-rich cores ranging from
50 to > 200 nm [5] (Figure 1). Similar topologies were
described for transcriptional condensates forming upon
ectopic overexpression of a transcription factor TAF15
construct: transcribing polymerases are at the periphery
of these phase-separated clusters, the core of which was

rich in TFs and (presumably) co-activators [26�].
Notably, in both these structures the engaged DNA
and nascent RNA lie on the outer surface of a protein-
dense core. This layered organization is supported by
recent imaging studies [27�, 28] showing polymorphic
Pol II clusters further varying according to the phos-
phorylation signature in their carboxyterminal domain
(CTD) (Y1S2P3T4S5P6S7)n = 26-52 repeats. Ser5 versus
Ser2 phosphorylation distinguishes initiating from elon-
gating Pol II, and the post-translational modifications
(PTMs) of its CTD can now reliably be mapped by mass

spectrometry [29].

Studies of endogenously-tagged MED19 and Pol II in
mouse embryonic stem cells identified two different as-
semblies [30]. One smaller than 100 nm in size and un-
stable (with average lifetimes in the order of tens of
seconds), while larger (> 300 nm) clusters contained 200
to 400 molecules and persisted for several minutes.
Another super-resolution microscopy study in living cells
reported 200 nm-large Pol II clusters in human cells with

dynamic size changes on the 10-sec scale [31]. In
zebrafish, active Pol II clusters formed inside mm-sized
subcompartments rich in RNA but lacking chromatin,
with active transcription sites of 100e200 nm in diameter
located at the RNAechromatin interface [28]. Thus, on
the one hand, hundreds of Pol II/TF clusters are detec-
ted at the w100 nm scale in line with measurements
previously of Pol II factories [5]. On the other hand, a
much smaller number of larger condensates is detected at
the w1 mm scale, which could correspond to the active
chromatin compartment defined previously [3]. How

these different length scales can be bridged remains
Current Opinion in Cell Biology 2022, 74:88–96
an open question. Furthermore, the spatial relation of
Mediator and the Pol II-cluster core is not clear. In-
spection of fluorescence images like those acquired by
Cho et al. [30] only showed partial overlap of Mediator
with the protein-rich core. This suggests that Pol II
clustering might not rely on this large coactivator com-
plex, in line with molecular evidence showing that its
depletion does not affect 3D chromatin organization at

active loci [32,33].
Phase separation as a mechanism for
assembling Pol II around a protein-rich core
A prototypical example of a highly transcriptionally-active

membraneless nuclear organelle for which PS has been
proposed is the nucleolus [34]. The rDNA repeats on
different human chromosomes fuse into a few large
nucleoli containing high concentration of RNA, proteins
including RNA Pol I, and specific TFs and extended
intrinsically disordered regions (IDRs) are found in
marker proteins like fibrillarin, nucleolin or nucleo-
phosmin. The fibrillar center (FC) carries high concen-
trations of Pol I and UBF transcribing rDNA repeats and
is surrounded by crescent-shaped dense fibrillar compo-
nents (DFC), where nascent rRNA begins to assemble

into ribosomes. Further rRNA processing takes place in
the outer granular component (GC) marked by nucleo-
phosmin. Nascent rRNAs are synthesized at the
FCeDFC interface with actively-transcribed rDNA
adopting a ring-shaped conformation of w170 and
w240 nm in diameter in human and mouse fibroblasts,
respectively [35]. Thus, active Pol I transcription zones
within the nucleolus are comparable size-wise to Pol II
factories and active Pol I also assembles around a protein-
rich core provided by the FC. Features of this topology
are reproduced in vitro with liquid droplets formed by
nucleophosmin, fibrillarin, and a Pol I subunit [36].

PS could similarly drive the assembly of Pol II cluster
protein-rich cores. Indeed, a microphase separation
mechanism has been proposed, whereby Pol II and
associated TFs locally nucleate transcriptional subcom-
partments upon zebrafish genome activation to create
“transcription pockets” of 100e200 nm in size at the
RNAechromatin interface [28]. Pol II clusters could
form via recruitment to such chromatin-associated LLPS
condensates. In a next step, elongating polymerases are
displaced relative to the core and result in the loosening

up of the condensate [27�]. This model whereby Pol II is
recruited to a core of a protein-dense surface-associated
LLPS condensate is in line with experimental data
showing that condensates by (endogenous or overex-
pressed) YAZ co-activators in human cells recruit Pol II
several minutes after they initially form and also accu-
mulate BRD4 and MED1 [37�,38]. The Pol II CTD
could mediate interactions with this droplet-like protein
core as inferred from in vitro experiments [39,40]. These
observations imply that the PS-driven protein-rich core
www.sciencedirect.com
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in the center of Pol II factories displaces inactive chro-
matin segments to give rise to the typical local organi-
zation pattern of euchromatin. Interestingly, these
organizational aspects can be partly recapitulated via a
dCas9-based optogenetic approach that exploits IDRs to
form condensates. These preferentially form in euchro-
matic regions and could physically pull into proximity
the genomic loci targeted, much like what is expected of

factories [41] (Figure 1).
The contribution of IDRs to Pol II cluster
formation
TF binding to cognate DNA sites represents a highly
specific interaction targeting the transcriptional ma-
chinery to certain genomic loci. Subsequent accumula-

tion of additional TFs and co-factors via transient and
largely unspecific interactions could then occur more
stochastically and in parallel for different factors. These
factors would comprise the elusive protein-dense core
described above, around which active Pol II clusters.
The question that naturally follows is: which forces hold
this core in place? Macromolecular crowding, entropic
depletion attraction, and hydrophobic effects are all
thought to mediate such assemblies [42,43]. Recently,
IDRs have emerged as a potential key player of this
process. They form a variety of molecular interactions

and about a third of the eukaryotic proteome contains
IDRs of > 30 residues in length [44]. A large number of
proteins involved in gene transcription carry long IDRs
(e.g., the Pol II CTD, general and cell-type-specific
TFs, co-activators like Mediator or BRD4, splicing fac-
tors) that are functionally important [45e47�]. For Pol
II clusters specifically, this was exemplified in a well-
controlled study in yeast, where gene expression and
transcriptional bursting were compromised upon short-
ening of the Pol II CTD and loss of clustering.
Remarkably, both effects were reverted by fusing the

PS-prone FUS or TAF15 IDRs to the end of shortened
CTDs [48��]. However, these cannot be considered
completely unspecific since TAF15 is a known poly-
merase co-factor and FUS coalesces with Pol II in a
transcription-dependent manner [49].

Different mechanisms that are not mutually exclusive
involve IDRs and appear to be relevant for Pol II clus-
tering. IDRs could provide the transient multivalent
interactions that mediate PS of Pol II via its CTD and
associated TFs and co-activators shown to form liquid
droplets in vitro [10,50]. Thus, LLPS may rationalize

formation of the protein-dense core of transcription
factories [8,9, 26�, 51, 52] (Figure 2A). Such transient
interactions would generate a phase of liquid-like
properties so long as they are weak and transient (but
will transition to gel- or solid-like states as strength in-
creases) [52]. The resulting subcompartment would
maintain high local concentrations of necessary factors
with a sharp boundary to the nucleoplasm that could also
www.sciencedirect.com
keep promoters and enhancers in (transient) proximity
to amplify transcriptional activation [8,9, 26�, 51, 52].
For PS to occur, sharp thresholds can be determined
based on the affinity, number, and density of IDReIDR
and DNA-TF interactions [9]. The question of whether
these are met at endogenous transcribed loci in vivo
remains unaddressed, as most studies showing droplet
production are either carried out in vitro or under non-
physiological conditions. Moreover, multivalent in-
teractions mediated by IDRs could enhance transcrip-
tion below the critical concentration for droplet
formation, suggesting that they activate transcription
independently of LLPS [11,55�,56��]. One function of
IDRs might simply be to mediate stoichiometric bind-
ing between TFs, co-activators and the Pol II CTD.
Although the purified Pol II CTD adopts an unstruc-
tured random coil conformation, it may nevertheless
establish interactions with sufficient strength in its
unstructured state with other TFs via multiple contacts

of certain amino acid residues in the CTD and depen-
dent on its phosphorylation pattern [29,39,57]. This is
apparent in experiments distinguishing initiating from
elongating Pol II via differences in Ser5 versus Ser2
phosphorylation [29]. In addition, lysine acetylation
occurring in CTD heptad non-canonical repeats also
modulate protein binding to it [58�], suggesting that
CTDmodification patterns represent a “code” directing
specific proteineprotein interactions (Figure 2B) [53].
Binding to IDRs with certain patterns of PTMs could
work like the recognition of epigenetic modifications of

the unstructured histone H3/H4 tails by “reader” pro-
tein domains [59]. In addition, the induced (partial)
folding of IDRs upon binding is a well-recognized
mechanism for establishing specific interactions by
these regions [44] (Figure 2C). A recent study dissected
the induced folding of the disordered p53 activation
domain during binding to the CREB binding protein
(CBP) [54��]. The flexible IDR chain mediated bind-
ing via different pathways makes the reaction faster than
it would occur for folded proteins and the diffusion-
controlled reaction rate limit can be reached. Finally,
IDRs could increase kinetic binding rates in a similar

manner also without induced folding (Figure 2D). By
stabilizing a transition state they could reduce the
occurrence of unproductive encounters between mac-
romolecules in the wrong steric orientation and, thus,
increase the kinetic rate for establishing specific in-
teractions during multi-subunit complex assembly [60].
Different IDRs may be interchangeable in this scenario
as they would simply serve to sustain an intermediate
state. A case in point would be PIC assembly as illus-
trated in the scheme of Figure 2D. Several high-
resolution PIC structures show specific interactions

between the different components leading to the as-
sembly of a well-defined 4-MDa complex [17]. How-
ever, these structures contain IDRs that are not
resolved. In addition, much like the Pol II CTD, many
Mediator subunits (i.e., MED4, -6, -8, -9, -13, -15, -19,
Current Opinion in Cell Biology 2022, 74:88–96
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Figure 2

Mechanisms by which IDRs could be important for Pol II factories. (a) LLPS: Via relatively weak multivalent interactions, IDRs, frequently together
with RNA, can drive phase separation of protein factors into liquid-like droplets above a critical concentration. (b) Readout of specific PTM patterns in an
IDR: This mechanism has been reported for a number of proteins that interact with the Pol II CTD [53]. (c) Specific interactions via induced (partial) IDR
folding: In the freely diffusing protein the IDR is in mostly random coil conformations with little helical structure. In an initial encounter, intermediate
structures of different IDR conformation and the interacting protein are sampled. Subsequently, a structured complex forms wherein the IDR is stably
folded at least in part [54��]. (d) IDR-mediated acceleration of complex formation: A hypothetical model is depicted to exemplify assembly of a part of the
Mediator complex core. Large IDRs in MED4, -6, -8, -9, -13, -19, -26, -31 and CDK8 stabilize a transition state. In this state, the different subunits
dynamically change their relative positions while remaining in contact. This enhances the probability of finding a configuration in which the specific in-
teractions needed for complex formation are established, before dissociating again.

92 Cell nucleus
-25, -31) and CDK8 carry large IDRs conserved across
metazoan, fungi and plants [45,46]. Hence, stabilization
of intermediate states that accelerate PIC assembly

could involve the interplay of these IDRs.
Current Opinion in Cell Biology 2022, 74:88–96
Structure–function relationships of Pol II
clustering
Transcription can be carried out by an individual Pol II
holoenzyme. Thus, any functional contributions from
www.sciencedirect.com
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the assembly of a larger Pol II cluster with multiple
promoters/enhancers that involves more promiscuous
multivalent interactions would be a modulation of this
primary process. Several recent studies conclude that
unspecific interactions of TF IDRs could reduce target
search time and make Pol II regulation more efficient
[61��e63�]. At the same time, high local concentration
of TFs should increase binding site occupancy and

enhance transcription activation capacity to reduce
“noise” [64]. Whether phase-separating TFs and/or co-
activators increase RNA production is currently not
clear. While it has been frequently proposed that it can
induce high transcription activity [8,26�,65e67], one
has to demonstrate whether changes in transcriptional
activity are indeed the result of PS. Recent work chal-
lenged the view that ectopic TF droplet formation at
promoters would enhance transcription, but concluded
that it is either neutral or even inhibits transcription
[55�]. Interestingly, other studies report that the

accumulation of regulatory factors in condensates in-
hibits Pol I [68] and Pol II transcription [69]. One could
then also consider the scenario where the requirements
for efficient transcription are met already at conditions
below the critical concentration at which phase sepa-
rated condensates form (but adequate for Pol II clus-
tering), and that condensates arise from local crowding
without enhancing functions [9]. Notably, endogenous
Sox2 and Brd4 were recently shown to still form clusters
after deletion of their IDRs, but not of their DNA-
binding domains [70��]. Moreover, high throughput

screens of promoter architecture found that even small
changes to the location of TF binding sites relative to
the core promoter and to each other profoundly affect
activation amplitude [71,72]. Thus, it is important to
separate the effect of the chromatin-bound TF fraction
from TFs enriched, but mobile inside
the subcompartment.
Conclusions and open questions
Invoking PS of transcriptional machinery components
offers a mechanistic explanation for the formation and
maintenance of Pol II clusters. It also helps rationalize the
persistence of high local concentrations of polymerases,
TFs, and co-activators at the active sites of transcription. A
PS mechanism would not contradict the transcription
factory concept, but rather comes to shed light on aspects
of it that were obscure, for example, the formation of

protein-rich factory cores. Despite this, multiple ques-
tions remain to be addressed. In the light
of alternative mechanisms that center around classical
stoichiometric proteineprotein and proteineDNA/
eRNA/echromatin interactions, one needs to be clear
about the experimental evidence that posit PS to govern
Pol II transcription under endogenous conditions. For
instance, how does the rather non-specific nature of con-
densates explain differences in bursting and transcrip-
tional output? Similarly, if phase-separated condensates
www.sciencedirect.com
help explain how different TF mixtures can all recruit Pol
II, how is spatiotemporal transcriptional specificity
established? Also, how are the presumed transitions from
an “initiating” to an “elongating” or “terminating” tran-
scriptional condensate achieved (e.g., the studies by
Cramer, Guo et al., and Cermakova et al. [16,73,74])?
Finally, would phase-separated transcriptional conden-
sates form at all transcriptionally-active loci or are they

more of an exception that requires specific conditions that
arise, for example, during stress response? Testing these
questions at endogenous genomic loci should represent
the next frontier in the field.
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